基于时延法的麦克风阵列声源定位分析

基于时延法的麦克风阵列声源定位分析

麦克风阵列: 麦克风阵列是由一定数目的声学传感器(麦克风)按照一定规则排列的多麦克风系统,而基于麦克风阵列的声源定位是指用麦克风拾取声音信号,通过对麦克风阵列的各路输出信号进行分析和处理,得到一个或者多个声源的位置信息。

麦克风阵列系统的声源定位技术研究意义在于: 输入的信息只有两个方向难以确定声源的位置,人类的听觉系统主要取决于头和外耳气压差声波实现声源定位。假使没有这个压力差,只能定位在平面上声源的位置,但就无法知道声音是从前面,或从后面传来的。因此,由人的听觉系统,科技研发人员得到了灵感,使用多个麦克风系统可以实现在三维空间中的声源位置的定位,麦克风的数量越多,所接收到的信息量也越多。声源的声源定位和声源增强是实现智能处理的两个关键问题,而声源定位是实现语音增强的前提和基础。一个麦克风的信息量较少,使得声源定位所需的信息缺乏,而麦克风阵列克服了上述缺点,充分利用每个麦克风信号之间的数据相关性,并加以融合,可以实现声源定位。

麦克风阵列声源定位技术的应用: 广泛应用于国防、智能机器人、视频会议及语音增强等众多领域,尤其在当下以智能办公和智能家居为主要室内场景的远场语音交互系统中。

二. 关于声源定位

目前基于麦克风阵列的声源定位方法主要有三种:基于最大输出功率的可控波束成形的定位方法、基于高分辨谱估计的定位方法、基于到达时延差估计的定位方法(Time Difference of Arrival,TDOA)。

  1. 基于最大输出功率的可控波束成形定位法。 波束形成法的原理是将麦克风接收到的信号进行滤波加权求和来形成波束,按照一定的规律对声源位置进行搜索,当麦克风达到最大输出功率时,为时搜索到的声源位置即为真实的声源方位。波束形成可分为常规的波束形成CBF(Conventional Beam Forming)、CBF+Adaptive Filter和自适应波束形成ABF(Adaptive Beam Forming)。
  2. 基于高分辨谱估计的定位法。 基于高分辨率谱估计的定位方法通过分解协方差矩阵估计声源方位。适合多个声源的情况,且声源的分辨率与阵列尺寸无关,突破了物理限制。该方法的优点是不受采样频率限制,且在一定程度下可以实现任意程度的定位,但是该方法计算复杂度较高,抗噪和抗混响性能较差,因此该方法适合在一些特定的环境下使用。这类方法可以拓展到宽带处理,但是对误差十分敏感(如麦克风单体误差,通道误差),适合远场模型,且矩阵运算量巨大。
  3. 基于到达时延差估计的定位法。 TDOA(time difference of arrival)是先后估计声源到达不同麦克风的时延差,通过时延来计算距离差,再利用距离差和麦克风阵列的空间几何位置来确定声源的位置。可分为TDOA估计(估计信号到达各麦克风的时间差)和TDOA定位(运用几何关系确定声源位置)两步。
    基于时延法的麦克风阵列声源定位分析

三. 基于广义互相关(GCC)计算时延

时延估计有很多种,比较经典就是广义互相关函数 (Generalized Cross Correlation, GCC) 估计时延,这里简单介绍基于广义互相关函数估计时延的方法。

在噪声存在情况下,一个由远处声源发出的,并且被两个不同空间中的麦克风监听的信号可以数学建模为:

x 1 = s 1 ( t ) + n 1 ( t ) x_1=s_1(t)+n_1(t) x1/span>=s1/span>(t)+n1/span>(t)                          (1)
x 2 = α s 1 ( t D ) + n 2 ( t ) x_2=αs_1(t-D)+n_2(t) x2/span>=αs1/span>(t/span>D)+n2/span>(t)               (2)

其中, s ( t ) s(t) s(t) 是声音信号, n 1 ( t ) 、 n 2 ( t ) n_1(t)、n_2(t) n1/span>(t)n2/span>(t)是两个声音传感器检测噪声。 三者是稳定的随机过程,且互不相关。

计算 x 1 x_1 x1/span> x 2 x_2 x2/span> 的互相关函数:

R x 1 x 2 ( τ ) = E [ x 1 ( t ) x 2 ( t τ ) ] R_{x_1x_2}(τ)=E [ x_1(t)*x_2(t-τ) ] Rx1/span>x2/span>/span>(τ)=E[x1/span>(t)/span>x2/span>(t/span>τ)]               (3)
R ^ x 1 x 2 ( τ ) = 1 T τ ∫ τ T x 1 ( t ) x 2 ( t τ ) d t hat R_{x_1x_2}(τ)=frac{1}{T-τ}int_τ^T {x_1(t)x_2(t-τ)} ,{rm d}t R^x1/span>x2/span>/span>(τ)=T/span>τ1/span>τT/span>x1/span>(t)x2/span>(t/span>τ)dt       (4)

其中估计的时延 D D D 为互相关函数值达到最大值时取得的 τ τ τ 值,即:

D ^ = a r g m a x   τ

来源:冬瓜~

声明:本站部分文章及图片转载于互联网,内容版权归原作者所有,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2022年6月23日
下一篇 2022年6月23日

相关推荐