软件架构设计

什么是软件架构

前言:软体设计师中有一些技术水平较高、经验较为丰富的人,他们需要承担软件系统的架构设计,也就是需要设计系统的元件如何划分、元件之间如何发生相互作用,以及系统中逻辑的、物理的、系统的重要决定的作出。在很多公司中,架构师不是一个专门的和正式的职务。通常在一个开发小组中,最有经验的程序员会负责一些架构方面的工作。在一个部门中,最有经验的项目经理会负责一些架构方面的工作。但是,越来越多的公司体认到架构工作的重要性。
  什么是软件系统的架构(Architecture)般而言,架构有两个要素:

  ·它是一个软件系统从整体到部分的最高层次的划分。

  一个系统通常是由元件组成的,而这些元件如何形成、相互之间如何发生作用,则是关于这个系统本身结构的重要信息。

  详细地说,就是要包括架构元件(Architecture Component)、联结器(Connector)、任务流(Task-flow)。所谓架构元素,也就是组成系统的核心”砖瓦”,而联结器则描述这些元件之间通讯的路径、通讯的机制、通讯的预期结果,任务流则描述系统如何使用这些元件和联结器完成某一项需求。

  ·建造一个系统所作出的最高层次的、以后难以更改的,商业的和技术的决定。

  在建造一个系统之前会有很多的重要决定需要事先作出,而一旦系统开始进行详细设计甚至建造,这些决定就很难更改甚至无法更改。显然,这样的决定必定是有关系统设计成败的最重要决定,必须经过非常慎重的研究和考察。

  计算机软件的历史开始于五十年代,历史非常短暂,而相比之下建筑工程则从石器时代就开始了,人类在几千年的建筑设计实践中积累了大量的经验和教训。建筑设计基本上包含两点,一是建筑风格,二是建筑模式。独特的建筑风格和恰当选择的建筑模式,可以使一个独一无二。

  下面的照片显示了中美洲古代玛雅建筑,Chichen-Itza大金字塔,九个巨大的石级堆垒而上,九十一级台阶(象征着四季的天数)夺路而出,塔顶的神殿耸入云天。所有的数字都如日历般严谨,风格雄浑。难以想象这是石器时代的建筑物。

图1、位于墨西哥Chichen-Itza(在玛雅语中chi意为嘴chen意为井)的古玛雅建筑。(摄影:作者)

  软件与人类的关系是架构师必须面对的核心问题,也是自从软件进入历史舞台之后就出现的问题。与此类似地,自从有了建筑以来,建筑与人类的关系就一直是建筑设计师必须面对的核心问题。英国首相丘吉尔说,我们构造建筑物,然后建筑物构造我们(We shape our buildings, and afterwards our buildings shape us)。英国下议院的会议厅较狭窄,无法使所有的下议院议员面向同一个方向入座,而必须分成两侧入座。丘吉尔认为,议员们入座的时候自然会选择与自己政见相同的人同时入座,而这就是英国政党制的起源。Party这个词的原意就是”方”、”面”。政党起源的关键就是建筑物对人的影响。

  在软件设计界曾经有很多人认为功能是最为重要的,形式必须服从功能。与此类似地,在建筑学界,现代主义建筑流派的开创人之一Louis Sullivan也认为形式应当服从于功能(Forms follows function)。

  几乎所有的软件设计理念都可以在浩如烟海的建筑学历史中找到更为遥远的历史回响。最为著名的,当然就是模式理论和XP理论。

架构的目标是什么

  正如同软件本身有其要达到的目标一样,架构设计要达到的目标是什么呢般而言,软件架构设计要达到如下的目标:

  ·可靠性(Reliable)。软件系统对于用户的商业经营和管理来说极为重要,因此软件系统必须非常可靠。

  ·安全行(Secure)。软件系统所承担的交易的商业价值极高,系统的安全性非常重要。

  ·可扩展性(Scalable)。软件必须能够在用户的使用率、用户的数目增加很快的情况下,保持合理的性能。只有这样,才能适应用户的市场扩展得可能性。

  ·可定制化(Customizable)。同样的一套软件,可以根据客户群的不同和市场需求的变化进行调整。

  ·可扩展性(Extensible)。在新技术出现的时候,一个软件系统应当允许导入新技术,从而对现有系统进行功能和性能的扩展

  ·可维护性(Maintainable)。软件系统的维护包括两方面,一是排除现有的错误,二是将新的软件需求反映到现有系统中去。一个易于维护的系统可以有效地降低技术支持的花费

  ·客户体验(Customer Experience)。软件系统必须易于使用。

  ·市场时机(Time to Market)。软件用户要面临同业竞争,软件提供商也要面临同业竞争。以最快的速度争夺市场先机非常重要。

架构的种类

  根据我们关注的角度不同,可以将架构分成三种:

  ·逻辑架构、软件系统中元件之间的关系,比如用户界面,数据库,外部系统接口,商业逻辑元件,等等。

  比如下面就是笔者亲身经历过的一个软件系统的逻辑架构图

图2、一个逻辑架构的例子

  从上面这张图中可以看出,此系统被划分成三个逻辑层次,即表象层次,商业层次和数据持久层次。每一个层次都含有多个逻辑元件。比如WEB服务器层次中有HTML服务元件、Session服务元件、安全服务元件、系统管理元件等。

  ·物理架构、软件元件是怎样放到硬件上的。

  比如下面这张物理架构图描述了一个分布于北京和上海的分布式系统的物理架构,图中所有的元件都是物理设备,包括网络分流器、代理服务器、WEB服务器、应用服务器、报表服务器、整合服务器、存储服务器、主机等等。

图3、一个物理架构的例子

  ·系统架构、系统的非功能性特征,如可扩展性、可靠性、强壮性、灵活性、性能等。

  系统架构的设计要求架构师具备软件和硬件的功能和性能的过硬知识,这一工作无疑是架构设计工作中最为困难的工作。

  此外,从每一个角度上看,都可以看到架构的两要素:元件划分和设计决定。

  首先,一个软件系统中的元件首先是逻辑元件。这些逻辑元件如何放到硬件上,以及这些元件如何为整个系统的可扩展性、可靠性、强壮性、灵活性、性能等做出贡献,是非常重要的信息。

  其次,进行软件设计需要做出的决定中,必然会包括逻辑结构、物理结构,以及它们如何影响到系统的所有非功能性特征。这些决定中会有很多是一旦作出,就很难更改的。

  根据作者的经验,一个基于数据库的系统架构,有多少个数据表,就会有多少页的架构设计文档。比如一个中等的数据库应用系统通常含有一百个左右的数据表,这样的一个系统设计通常需要有一百页左右的架构设计文档。

架构师

  软体设计师中有一些技术水平较高、经验较为丰富的人,他们需要承担软件系统的架构设计,也就是需要设计系统的元件如何划分、元件之间如何发生相互作用,以及系统中逻辑的、物理的、系统的重要决定的作出。

  这样的人就是所谓的架构师(Architect)。在很多公司中,架构师不是一个专门的和正式的职务。通常在一个开发小组中,最有经验的程序员会负责一些架构方面的工作。在一个部门中,最有经验的项目经理会负责一些架构方面的工作。

  但是,越来越多的公司体认到架构工作的重要性,并且在不同的组织层次上设置专门的架构师位置,由他们负责不同层次上的逻辑架构、物理架构、系统架构的设计、配置、维护等工作。

软件的架构设计

好的开始相当于成功一半

开始之初的架构设计决定着软件产品的生死存亡。“好的开始相当于成功一半”。

开始的架构设计也是最难的,需要调研同类产品的情况以及技术特征,了解当前世界上对这种产品所能提供的理论支持和技术平台支持。再结合自己项目的特点(需要透彻的系统分析),才能逐步形成自己项目的架构蓝图。

比如要开发网站引擎系统,就从Yahoo的个人主页生成工具到虚拟主机商提供的网站自动生成系统,以及IBM Webphere Portal的特点和局限 从而从架构设计角度定立自己产品的位置。

好的设计肯定需要经过反复修改,从简单到复杂的循环测试是保证设计正确的一个好办法

由于在开始选择了正确的方向,后来项目的实现过程也验证了这种选择,但在一些架构设计的细部方面,还需要对方案进行修改,属于那种螺旋上升的方式,显然这是通过测试第一的思想和XP工程方法来实现的。

如果我们开始的架构设计在技术平台定位具有一定的世界先进水平,那么,项目开发实际有一半相当于做实验,是研发,存在相当的技术风险。

因此,一开始我们不可能将每个需求都实现,而是采取一种简单完成架构流程的办法,使用最简单的需求将整个架构都简单的完成一遍(加入人工干预),以检验各个技术环节是否能协调配合工作(非常优秀先进的两种技术有时无法在一起工作),同时也可以探知技术的深浅,掌握项目中的技术难易点。这个过程完成后,我们就对设计方案做出上面的重大修改,丰富完善了设计方案。

设计模式是支撑架构的重要组件

架构设计也类似一种工作流,它是动态的,这点不象建筑设计那样,一开始就能完全确定,架构设计伴随着整个项目的进行过程之中,有两种具体操作保证架构设计的正确完成,那就是设计模式(静态)和工程项目方法(RUP或XP 动态的)。

设计模式是支撑架构的一种重要组件,这与建筑有很相象的地方,一个建筑物建立设计需要建筑架构设计,在具体施工中,有很多建筑方面的规则和模式。

我们从J2EE蓝图模式分类http://java.sun.com/blueprints/patterns/catalog.html中就可以很清楚的看到J2EE这样一个框架软件的架构与设计模式的关系。

架构设计是骨架,设计模式就是肉

这样,一个比较丰富的设计方案可以交由程序员进一步完成了,载辅助以适当的工程方法,这样就可保证项目的架构设计能正确快速的完成。

时刻牢记架构设计的目标

由于架构设计是在动态中完成的,因此在把握架构设计的目标上就很重要,因此在整个项目过程中,甚至每一步我们都必须牢记我们架构设计的总体目标,可以概括下面几点:

  1. 最大化的重用:这个重用包括组件重用 和设计模式使用等多个方面。

比如,我们项目中有用户注册和用户权限系统验证,这其实是个通用课题,每个项目只是有其内容和一些细微的差别,如果我们之前有这方面成功研发经验,可以直接重用,如果没有,那么我们就要进行这个子项目的研发,在研发过程中,不能仅仅看到这个项目的需求,也要以架构的概念去完成这个可以称为组件的子项目。

  1. 尽可能的简单明了:我们解决问题的总方向是将复杂问题简单化,其实这也是中间件或多层体系技术的根本目标。但是在具体实施设计过程中,我们可能会将简单问题复杂化,特别是设计模式的运用上很容易范这个错误,因此如何尽可能的做到设计的简单明了是不容易的。

我认为落实到每个类的具体实现上要真正能体现系统事物的本质特征,因为事物的本质特征只有一个,你的代码越接近它,表示你的设计就是简单明了,越简单明了,你的系统就越可靠。更多情况是,一个类并不能反应事物本质,需要多个类的组合协调,那么能够正确使用合适的设计模式就称为重中之重。

我们看一个具备好的架构设计的系统代码时,基本看到的都是设计模式,宠物店(pet store)就是这样的例子。或者可以这样说,一个好的架构设计基本是由简单明了的多个设计模式完成的。

  1. 最灵活的拓展性:架构设计要具备灵活性 拓展性,这样,用户可以在你的架构上进行二次开发或更加具体的开发。

要具备灵活的拓展性,就要站在理论的高度去进行架构设计,比如现在工作流概念逐步流行,因为我们具体很多实践项目中都有工作流的影子,工作流中有一个树形结构权限设定的概念就对很多领域比较通用。

树形结构是组织信息的基本形式,我们现在看到的网站或者ERP前台都是以树形菜单来组织功能的,那么我们在进行架构设计时,就可以将树形结构和功能分开设计,他们之间联系可以通过树形结构的节点link在一起,就象我们可以在圣诞树的树枝上挂各种小礼品一样,这些小礼品就是我们要实现的各种功能。

有了这个概念,通常比较难实现的用户级别权限控制也有了思路,将具体用户或组也是和树形结构的节点link在一起,这样就间接实现了用户对相应功能的权限控制,有了这样的基本设计方案的架构无疑具备很灵活的拓展性。

如何设计架构/h2>

Part 1 层

当然,层最难的一个问题还是各个层都有些什么,以及要承担何种责任。

典型的三层结构

例子

何时分层

更多的层模式

控制/中介层 表示-领域中介层
领域层 领域层
数据映射层 数据库交互模式中的Database Mapper
数据源层 基础架构层

表示层 运行在服务器上的表示层
业务层 领域层
整合层 基础架构层
资源层 基础架构层通信的外部数据

Part 2 组织领域逻辑

选择一个地方运行领域逻辑

领域逻辑的接口

Part 3 组织web Server

web server端的MVC工作流程示意图

View模式

Controller模式

架构设计的方法学

约公元前25年,古罗马建筑师维特鲁威说:“理想的建筑师应该既是文学家又是数字家,他还应通晓历史,热衷于哲学研究,精通音乐,懂得医药知识,具有法学造诣,深谙天文学及天文计算。”(好难哪,软件构架设计师的要求呢家好好想想吧。)
本文目录
一、与构架有关的几个基本概念;
二、构架设计应考虑的因素概揽;
三、程序的运行时结构方面的考虑;
四、源代码的组织结构方面的考虑;
五、写系统构架设计文档应考虑的问题
六、结语
一、与构架有关的几个基本概念:
1、模块(module):一组完成指定功能的语句,包括:输入、输出、逻辑处理功能、内部信息、运行环境(与功能对应但不是一对一关系)。
2、组件(component):系统中相当重要的、几乎是独立的可替换部分,它在明确定义的构架环境中实现确切的功能。
3、模式(pattern):指经过验证,至少适用于一种实用环境(更多时候是好几种环境)的解决方案模板(用于结构和行为。在 UML中:模式由参数化的协作来表示,但 UML 不直接对模式的其他方面(如使用结果列表、使用示例等,它们可由文本来表示)进行建模。存在各种范围和抽象程度的模式,例如,构架模式、分析模式、设计模式和代码模式或实施模式。模式将可以帮助我们抓住重点。构架也是存在模式的。比如,对于系统结构设计,我们使用层模式;对于分布式系统,我们使用代理模式(通过使用代理来替代实际的对象,使程序能够控制对该对象的访问);对于交互系统,我们使用MVC(M模型(对象)/V视图(输出管理)/C控制器(输入处理))模式。模式是针对特定问题的解,因此,我们也可以针对需求的特点采用相应的模式来设计构架。
4、构架模式(architectural pattern):表示软件系统的基本结构组织方案。它提供了一组预定义的子系统、指定它们的职责,并且包括用于组织其间关系的规则和指导。
5、层(layer):对模型中同一抽象层次上的包进行分组的一种特定方式。通过分层,从逻辑上将子系统划分成许多集合,而层间关系的形成要遵循一定的规则。通过分层,可以限制子系统间的依赖关系,使系统以更松散的方式耦合,从而更易于维护。(层是对构架的横向划分,分区是对构架的纵向划分)。
6、系统分层的几种常用方法:
1) 常用三层服务:用户层、业务逻辑层、数据层;
2) 多层结构的技术组成模型:表现层、中间层、数据层;
3) 网络系统常用三层结构:核心层、汇聚层和接入层;
4) RUP典型分层方法:应用层、专业业务层、中间件层、系统软件层;
5) 基于Java的B/S模式系统结构:浏览器端、服务器端、请求接收层、请求处理层;
6) 某六层结构:功能层(用户界面)、模块层、组装层(软件总线)、服务层(数据处理)、数据层、核心层;
7、构架(Architecture,愿意为建筑学设计和建筑物建造的艺术与科学): 在RUP中的定义:软件系统的构架(在某一给定点)是指系统重要构件的组织或结构,这些重要构件通过接口与不断减小的构件与接口所组成的构件进行交互;《软件构架实践》中的定义:某个软件或者计算系统的软件构架即组成该系统的一个或者多个结构,他们组成软件的各个部分,形成这些组件的外部可见属性及相互间的联系;IEEE 1471-2000中的定义:the fundamental organization of a system emboided in its components,their relationships to each other,and to the enviroment and the principles guiding its design and evolution,构架是系统在其所处环境中的最高层次的概念。软件系统的构架是通过接口交互的重要构件(在特定时间点)的组织或结构,这些构件又由一些更小的构件和接口组成。(“构架”可以作为名词,也可作为动词,作为动词的“构架”相当于“构架设计”)
8、构架的描述方式:“4+1”视图(用例视图、设计视图、实现视图、过程视图、配置视图)是一个被广为使用的构架描述的模型;RUP过程的构架描述模板在“4+1”视图的基础上增加了可选的数据视图(从永久性数据存储方面来对系统进行说明);HP公司的软件描述模板也是基于“4+1”视图。
9、结构:软件构架是多种结构的体现,结构是系统构架从不同角度观察所产生的视图。就像建筑物的结构会随着观察动机和出发点的不同而有多种含义一样,软件构架也表现为多种结构。常见的软件结构有:模块结构、逻辑或概念结构、进程或协调结构、物理结构、使用结构、调用结构、数据流、控制流、类结构等等。
二、构架设计应考虑的因素概揽:
模块构架设计可以从程序的运行时结构和源代码的组织结构方面考虑。
1、程序的运行时结构方面的考虑:
1) 需求的符合性:正确性、完整性;功能性需求、非功能性需求;
2) 总体性能(内存管理、数据库组织和内容、非数据库信息、任务并行性、网络多人操作、关键算法、与网络、硬件和其他系统接口对性能的影响);
3) 运行可管理性:便于控制系统运行、监视系统状态、错误处理;模块间通信的简单性;与可维护性不同;
4) 与其他系统接口兼容性;
5) 与网络、硬件接口兼容性及性能;
6) 系统安全性;
7) 系统可靠性;
8) 业务流程的可调整性;
9) 业务信息的可调整性
10) 使用方便性
11) 构架样式的一致性
注:运行时负载均衡可以从系统性能、系统可靠性方面考虑。
2、源代码的组织结构方面的考虑:
1) 开发可管理性:便于人员分工(模块独立性、开发工作的负载均衡、进度安排优化、预防人员流动对开发的影响)、利于配置管理、大小的合理性与适度复杂性;
2) 可维护性:与运行可管理性不同;
3) 可扩充性:系统方案的升级、扩容、扩充性能;
4) 可移植性:不同客户端、应用服务器、数据库管理系统;
5) 需求的符合性(源代码的组织结构方面的考虑)。
三、程序的运行时结构方面的考虑:
1、 需求的符合性:正确性、完整性;功能性需求、非功能性需求
软件项目最主要的目标是满足客户需求。在进行构架设计的时候,大家考虑更多的是使用哪个运行平台、编成语言、开发环境、数据库管理系统等问题,对于和客户需求相关的问题考虑不足、不够系统。如果无论怎么好的构架都无法满足客户明确的某个功能性需求或非功能性需求,就应该与客户协调在项目范围和需求规格说明书中删除这一需求。否则,架构设计应以满足客户所有明确需求为最基本目标,尽量满足其隐含的需求。(客户的非功能性需求可能包括接口、系统安全性、可靠性、移植性、扩展性等等,在其他小节中细述)
一般来说,功能需求决定业务构架、非功能需求决定技术构架,变化案例决定构架的范围。需求方面的知识告诉我们,功能需求定义了软件能够做些什么。我们需要根据业务上的需求来设计业务构架,以使得未来的软件能够满足客户的需要。非功能需求定义了一些性能、效率上的一些约束、规则。而我们的技术构架要能够满足这些约束和规则。变化案例是对未来可能发生的变化的一个估计,结合功能需求和非功能需求,我们就可以确定一个需求的范围,进而确定一个构架的范围。(此段From林星)
这里讲一个前几年因客户某些需求错误造成构架设计问题而引起系统性能和可靠性问题的小小的例子:此系统的需求本身是比较简单的,就是将某城市的某业务的全部历史档案卡片扫描存储起来,以便可以按照姓名进行查询。需求阶段客户说卡片大约有20万张,需求调研者出于对客户的信任没有对数据的总量进行查证。由于是中小型数据量,并且今后数据不会增加,经过计算20万张卡片总体容量之后,决定使用一种可以单机使用也可以联网的中小型数据库管理系统。等到系统完成开始录入数据时,才发现数据至少有60万,这样使用那种中小型数据库管理系统不但会造成系统性能的问题,而且其可靠性是非常脆弱的,不得不对系统进行重新设计。从这个小小的教训可以看出,需求阶段不仅对客户的功能需求要调查清楚,对于一些隐含非功能需求的一些数据也应当调查清楚,并作为构架设计的依据。
对于功能需求的正确性,在构架设计文档中可能不好验证(需要人工、费力)。对于功能需求完整性,就应当使用需求功能与对应模块对照表来跟踪追溯。对于非功能需求正确性和完整性,可以使用需求非功能与对应设计策略对照表来跟踪追溯评估。
“软件设计工作只有基于用户需求,立足于可行的技术才有可能成功。”
2、 总体性能
性能其实也是客户需求的一部分,当然可能是明确的,也有很多是隐含的,这里把它单独列出来在说明一次。性能是设计方案的重要标准,性能应考虑的不是单台客户端的性能,而是应该考虑系统总的综合性能;
性能设计应从以下几个方面考虑:内存管理、数据库组织和内容、非数据库信息、任务并行性、网络多人操作、关键算法、与网络、硬件和其他系统接口对性能的影响;
几点提示:算法优化及负载均衡是性能优化的方向。经常要调用的模块要特别注意优化。占用内存较多的变量在不用时要及时清理掉。需要下载的网页主题文件过大时应当分解为若干部分,让用户先把主要部分显示出来。
3、 运行可管理性
系统的构架设计应当为了使系统可以预测系统故障,防患于未然。现在的系统正逐步向复杂化、大型化发展,单靠一个人或几个人来管理已显得力不从心,况且对于某些突发事件的响应,人的反应明显不够。因此通过合理的系统构架规划系统运行资源,便于控制系统运行、监视系统状态、进行有效的错误处理;为了实现上述目标,模块间通信应当尽可能简单,同时建立合理详尽的系统运行日志,系统通过自动审计运行日志,了解系统运行状态、进行有效的错误处理;(运行可管理性与可性不同)
4、 与其他系统接口兼容性(解释略)
5、 与网络、硬件接口兼容性及性能(解释略)
6、 系统安全性
随着计算机应用的不断深入和扩大,涉及的部门和信息也越来越多,其中有大量保密信息在网络上传输,所以对系统安全性的考虑已经成为系统设计的关键,需要从各个方面和角度加以考虑,来保证数据资料的绝对安全。
7、 系统可靠性
系统的可靠性是现代信息系统应具有的重要特征,由于人们日常的工作对系统依赖程度越来越多,因此系统的必须可靠。系统构架设计可考虑系统的冗余度,尽可能地避免单点故障。系统可靠性是系统在给定的时间间隔及给定的环境条件下,按设计要求,成功地运行程序的概率。成功地运行不仅要保证系统能正确地运行,满足功能需求,还要求当系统出现意外故障时能够尽快恢复正常运行,数据不受破坏。
8、 业务流程的可调整性
应当考虑客户业务流程可能出现的变化,所以在系统构架设计时要尽量排除业务流程的制约,即把流程中的各项业务结点工作作为独立的对象,设计成独立的模块或组件,充分考虑他们与其他各种业务对象模块或组件的接口,在流程之间通过业务对象模块的相互调用实现各种业务,这样,在业务流程发生有限的变化时(每个业务模块本身的业务逻辑没有变的情况下),就能够比较方便地修改系统程序模块或组件间的调用关系而实现新的需求。如果这种调用关系被设计成存储在配置库的数据字典里,则连程序代码都不用修改,只需修改数据字典里的模块或组件调用规则即可。
9、 业务信息的可调整性
应当考虑客户业务信息可能出现的变化,所以在系统构架设计时必须尽可能减少因为业务信息的调整对于代码模块的影响范围。
10、 使用方便性
使用方便性是不须提及的必然的需求,而使用方便性与系统构架是密切相关的。WinCE(1.0)的失败和后来改进版本的成功就说明了这个问题。WinCE(1.0)有太多层次的视窗和菜单,而用户则更喜欢简单的界面和快捷的操作。失败了应当及时纠正,但最好不要等到失败了再来纠正,这样会浪费巨大的财力物力,所以在系统构架阶段最好能将需要考虑的因素都考虑到。当然使用方便性必须与系统安全性协调平衡统一,使用方便性也必须与业务流程的可调整性和业务信息的可调整性协调平衡统一。“满足用户的需求,便于用户使用,同时又使得操作流程尽可能简单。这就是设计之本。”
11、构架样式的一致性
软件系统的构架样式有些类似于建筑样式(如中国式、哥特式、希腊复古式)。软件构架样式可分为数据流构架样式、调用返回构架样式、独立组件构架样式、以数据为中心的构架样式和虚拟机构架样式,每一种样式还可以分为若干子样式。构架样式的一致性并不是要求一个软件系统只能采用一种样式,就像建筑样式可以是中西结合的,软件系统也可以有异质构架样式(分为局部异质、层次异质、并行异质),即多种样式的综合,但这样的综合应该考虑其某些方面的一致性和协调性。每一种样式都有其使用的时机,应当根据系统最强调的质量属性来选择。
四、源代码的组织结构方面的考虑:
1、 开发可管理性
便于人员分工(模块独立性、开发工作的负载均衡、进度安排优化、预防人员流动对开发的影响:一个好的构架同时应有助于减少项目组的压力和紧张,提高软件开发效率)、利于配置管理、大小的合理性、适度复杂性;
1)便于人员分工-模块独立性、层次性
模块独立性、层次性是为了保证项目开发成员工作之间的相对独立性,模块联结方式应该是纵向而不是横向, 模块之间应该是树状结构而不是网状结构或交叉结构,这样就可以把开发人员之间的通信、模块开发制约关系减到最少。同时模块独立性也比较利于配置管理工作的进行。现在有越来越多的的软件开发是在异地进行,一个开发组的成员可能在不同城市甚至在不同国家,因此便于异地开发的人员分工与配置管理的源代码组织结构是非常必要的。
2)便于人员分工-开发工作的负载均衡
不仅仅是开发出来的软件系统需要负载均衡,在开发过程中开发小组各成员之间工作任务的负载均衡也是非重要的。所谓工作任务的负载均衡就是通过合理的任务划分按照开发人员特点进行分配任务,尽量让项目组中的每个人每段时间都有用武之地。这就需要在构架设计时应当充分考虑项目组手头的人力资源,在实现客户需求的基础上实现开发工作的负载均衡,以提高整体开发效率。
3)便于人员分工-进度安排优化;
进度安排优化的前提是模块独立性并搞清楚模块开发的先后制约关系。利用工作分解结构对所有程序编码工作进行分解,得到每一项工作的输入、输出、所需资源、持续时间、前期应完成的工作、完成后可以进行的工作。然后预估各模块需要时间,分析各模块的并行与串行(顺序制约),绘制出网络图,找出影响整体进度的关键模块,算出关键路径,最后对网络图进行调整,以使进度安排最优化。
有个家喻户晓的智力题叫烤肉片策略:约翰逊家户外有一个可以同时烤两块肉片的烤肉架,烤每块肉片的每一面需要10分钟,现要烤三块肉片给饥肠辘辘急不可耐的一家三口。问题是怎样才能在最短的时间内烤完三片肉。一般的做法花20分钟先烤完前两片,再花20分钟烤完第三片。有一种更好的方法可以节省10分钟,大家想想。
4)便于人员分工-预防员工人员流动对开发的影响
人员流动在软件行业是司空见惯的事情,已经是一个常见的风险。作为对这一风险的有效的防范对策之一,可以在构架设计中考虑到并预防员工人员流动对开发的影响。主要的思路还是在模块的独立性上(追求高内聚低耦合),组件化是目前流行的趋势。
5)利于配置管理(独立性、层次性)
利于配置管理与利于人员分工有一定的联系。除了逻辑上的模块组件要利于人员分工外,物理上的源代码层次结构、目录结构、各模块所处源代码文件的部署也应当利于人员分工和配置管理。(尽管现在配置管理工具有较强大的功能,但一个清楚的源码分割和模块分割是非常有好处的)。
6)大小的合理性与适度复杂性
大小的合理性与适度复杂性可以使开发工作的负载均衡,便于进度的安排,也可以使系统在运行时减少不必要的内存资源浪费。对于代码的可阅读性和系统的可维护性也有一定的好处。另外,过大的模块常常是系统分解不充分,而过小的模块有可能降低模块的独立性,造成系统接口的复杂。
2、 可维护性
便于在系统出现故障时及时方便地找到产生故障的原因和源代码位置,并能方便地进行局部修改、切割;(可维护性与运行可管理性不同)
3、 可扩充性:系统方案的升级、扩容、扩充性能
系统在建成后会有一段很长的运行周期,在该周期内,应用在不断增加,应用的层次在不断升级,因此采用的构架设计等方案因充分考虑升级、扩容、扩充的可行性和便利
4、 可移植性
不同客户端、应用服务器、数据库管理系统:如果潜在的客户使用的客户端可能使用不同的操作系统或浏览器,其可移植性必须考虑客户端程序的可移植性,或尽量不使业务逻辑放在客户端;数据处理的业务逻辑放在数据库管理系统中会有较好的性能,但如果客户群中不能确定使用的是同一种数据库管理系统,则业务逻辑就不能数据库管理系统中;
达到可移植性一定要注重标准化和开放性:只有广泛采用遵循国际标准,开发出开放性强的产品,才可以保证各种类型的系统的充分互联,从而使产品更具有市场竞争力,也为未来的系统移植和升级扩展提供了基础。
5、 需求的符合性
从源代码的组织结构看需求的符合型主要考虑针对用户需求可能的变化的软件代码及构架的最小冗余(同时又要使得系统具有一定的可扩展性)。
五、写系统构架设计文档应考虑的问题
构架工作应该在需求开发完成约80%的时候开始进行,不必等到需求开发全部完成,需要项目经理以具体的判断来评估此时是否足以开始构建软件构架。
给出一致的轮廓:系统概述。一个系统构架需要现有概括的描述,开发人员才能从上千个细节甚至数十个模块或对象类中建立一致的轮廓。
构架的目标应该能够清楚说明系统概念,构架应尽可能简化,最好的构架文件应该简单、简短,清晰而不杂乱,解决方案自然。
构架应单先定义上层的主要子系统,应该描述各子系统的任务,并提供每个子系统中各模块或对象类的的初步列表。
构架应该描述不同子系统间相互通信的方式,而一个良好的构架应该将子系统间的通信关系降到最低。
成功构架的一个重要特色,在于标明最可能变更的领域,应当列出程序中最可能变更的部分,说明构架的其他部分如何应变。

来源:春水煎茶

声明:本站部分文章及图片转载于互联网,内容版权归原作者所有,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2015年7月13日
下一篇 2015年7月14日

相关推荐