【JY】橡胶系支座/摩擦系支座全面解析

有你关注 所以精彩

First Frost

bf398ee717e346bde4d6521d4780400a.png

●属性:橡胶的密度约为1.3g/cm3~1.6g/cm3,撕裂应力为20Mpa~25Mpa。(此处应力对比的是材料第一主应力,与整体支座的压应力、拉应力不同概念)。

不同橡胶具有不同的熔点,天然生胶的熔点在130~140°C时完全软化,200°C开始分解。

(注意:对于叠合层结构的叠层橡胶支座,考虑橡胶材料的熔点意义不大,应考虑整体橡胶支座的熔程!)

【JY】橡胶支座精细化模拟与有限元分析注意要点

【JY】橡胶支座的简述和其力学性能计算

d97e0e5822a57adbc5c410ee083fe7f9.png

900e39aedd6a5931d1e36731d9be1283.png

1——上下锚固装置、

2——上座板、

3——上滑动摩擦面、

4——球冠体、

5——下滑动摩擦面、

6——下座板

可看出从材料上的对比,虽然橡胶支座可以改进耗能材料(比如铅改成锡等),摩擦支座可以改进镜面摩擦板面,但本质上仍然是高分子聚合物的性能对比(橡胶VS聚四氟乙烯)。但特别注意的是铅对环境有污染,高阻尼橡胶支座和摩擦摆支座较符合低碳环保的生活。

?

【竖向压应力对比】

若单受压的极限破坏下,普通橡胶支座通常极限面压在90Mpa~100Mpa,而(通常受限于聚四氟乙烯板的极限压力性能)摩擦摆支座通常极限面压在100Mpa~120Mpa。

然而真实三向受力需要考虑橡胶支座的压弯剪耦合,通过定剪切压缩试验表明,当水平剪切变形小100%时,橡胶隔震支座的极限压应力无明显降低。当超过100%时,橡胶支座的极限面压会急剧下降。因此,通常橡胶支座的重力工况下的设计面压不大于支座破坏压应力的1/6,重力荷载代表值下设计面压为10~15Mpa。而摩擦摆真实三向受力下,极限面压受水平变形较小的影响。

因此通常设计下,同等量级的支座,摩擦系支座的设计竖向压力比橡胶系支座大。

06fb20e229d9984b11808d9a3a51f660.png

6722176a1779cdb7ed06db17aa5317fa.png

极限纯拉裂破坏

单个支座受到1Mpa时,支座受拉力有多大呢见下表,1Mpa看似非常小,但是换成拉力是可以比较大的,所以不要小看这1Mpa的拉力,也需要工程师谨慎复核结构受拉超的问题。

ca5763fba7b0072d71e49440c5d9a666.png

橡胶支座硬化变形全过程

b29a015fee0cb0b589bceaa3388bb66e.png

 定压力下未超过限位的摩擦摆支座变形

弹性滑板支座和摩擦摆支座的罕遇地震下,设计的水平位移分别不大于其水平极限位移的0.75倍和0.85倍。常见摩擦摆产品的极限位移有200mm~900mm,也可以生产更大如1500mm以上等。

橡胶支座目前工艺能做到1500mm,大部分支座生产S2都控制为5,因此罕遇地震控制250%可换算位移为下表。

c35a803aa508e146192055d03dac1bdd.png

位移谱分析

实际上,隔震效果在隔震周期和阻尼比确定下来后,位移随之基本可以确定了,因此过大的位移显得毫无意义。

而过小的位移需要考虑隔震屈服后周期对比非隔震结构的周期是否放大足够(建议放大2.5~4倍,否则几乎没有隔震效果!)

●PS:有人问非隔震结构周期已经很长了如4s、5s的高层结构,怎么办

隔震虽好,但不是万能的,这个情况建议选择其他减隔震措施更优!

?

【高速加载】

铅芯橡胶隔震支座在实时多次水平往复快速试验后,铅芯橡胶隔震支座竖向刚度基本一样,铅芯橡胶隔震支座实时多次往复变形对其竖向刚度基本没有影响。铅芯橡胶隔震支座在快速实时往复试验,铅芯屈服力会退化降低。但是震后,隔震支座静置一段时间后(铅芯温度恢复到常温),其性能基本又恢复到原本的状态。

其他橡胶隔震(如:天然橡胶支座),则在往复试验中能保持稳定的力学性能状态。

bf3c4d468537a51f45fee70c446bec72.png

?

【抗火耐高温能力】

橡胶支座是由橡胶薄层和薄钢板交替粘连而成的。

橡胶材料在热、氧等外界因素作用下,本身结构会发生变化,其结果是以下情况的叠合:

1、分子链降解、分子量下降,使材料发粘,发软;

2、分子链产生交联,使材料变硬、变脆;

3、分子结构上产生变化,在这个过程中橡胶分子链降解、交联结构改变,橡胶老化变质。

对于橡胶支座来说,热稳定性能很重要,其耐热性取决于热和氧化两者的综合效应。总体而言受热或老化支座刚度呈现下降趋势。

e38bbde2974ca1686be7eccec92eac36.png

对于摩擦摆支座,钢材具有较高的熔点1535℃,由于支座构造,几乎不需要考虑钢板的高温受弯问题。因此大部分认为摩擦摆的耐火性能高于橡胶支座。

但是!但是!但是!!

钢材具有非常良好的导热性!且聚四氟乙烯板的正常工作温度250℃以下,熔点327°C,沸点为400°C!在火焰燃烧下,10~15分钟内很快达到250°C,当超过250℃时,聚四氟乙烯板失去工作强度和刚度。在高温下,支座的上下盖板就像个锅炉,煮着聚四氟乙烯板。因此摩擦摆支座在高温下,瞬间失去隔震能力,轴向受力直接退化成钢对钢承载。因此,支座功能直接失效。

综上,橡胶支座和摩擦摆支座都不具有很好的抗火耐高温性能!切记都需要防火处理!

?

【支座计算稳定性】

当橡胶支座S1>15,S2>5时,基本水平和竖向解耦,屈服后水平刚度在地震下基本趋于理想的稳定状态,且大量试验已经证明橡胶支座属于位移型支座,与变形速度无关。

但是橡胶支座水平刚度虽然稳定,但是决定隔震动力性能的需要包含结构质量,才可得到整体隔震结构的周期。这点会影响到什么呢/p>

例如结构周期需求为4s,由于结构太轻而勉强选择LRB200达到周期需求,这一定是不满足位移要求的,该支座在罕遇地震的最大变形限制250%只有100mm,远不足性能要求。当结构非常轻,而隔震周期又需要比较长,此时选择橡胶支座是无法满足设计要求的。应更改其他支座,例如弹簧支座、摩擦摆支座。

94e50969ef92e9ea30bdc726f1916e2c.png

仅考虑水平输入 

34e5eb964a004013214cf79cc1e65446.png

橡胶支座的老化问题是很多人比较关心的问题。先给结论:以目前的工艺条件,无需担心隔震支座老化问题。

橡胶老化主要是长期与复杂恶劣环境以及空气的接触导致,而橡胶支座外部会有类似混凝土保护层厚度的一层橡胶包裹,这层橡胶的作用主要是为了保护支座缓解老化。

从外部到内部的老化过程中,随着受腐蚀保护层橡胶深度越深,老化时长越长,而且支座各个性能指标都有微小的变化,通常的趋势是老化前后刚度变化趋势相近呈递减,而其等效阻尼比、屈服力呈递增趋势。

5416acba03e0c15f705348c9ccb40784.png

 因此,建议!建议!建议!!

建议通过隔震层 屈服力/摩阻力 和 屈服后刚度 进行计算极限最大残余位移,来限制隔震结构的残余位移!而不是通过1.2倍罕遇地震下最大位移对应恢复力来确定。毕竟我们并不知下一次地震来的是多大的地震。

 而实际上,在震害中很难达到极限最大残余位移,由于地震幅值变化特性,会将支座残余变形震小,通常会小于极限最大残余变形的一半。

 在Peer网上随机下载100条各式各样的地震波,进行计算分析。隔震周期为3.14s,屈重比/摩擦系数为0.04时,滞回曲线上极限最大残余位移为98mm,而实际上大部分都小于25mm。即便考虑实际情况,支座超小变形未启动的情况,那么大部分变形也未超过35mm。

 注意:本计算不考虑两类支座硬化损伤等问题,均以支座质量过检,正常工作的情况! 

58d2b5ce979633e97db8e299e7ba91d7.png

220Gal输入的情况

b7b1decb8a9938da6be57d686e9a9cc2.png

 400Gal输入的情况 

b26c14e5ef0a8705425a029ebed0abea.png

610Gal输入的情况

5f7061cf363a0d32d5ae2b5a4c67a090.jpeg

 ~关注未来更精彩~

来源:建源之光

声明:本站部分文章及图片转载于互联网,内容版权归原作者所有,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2022年10月15日
下一篇 2022年10月15日

相关推荐