人工神经网络可以做什么,人工神经网络有什么用

人工神经网络可以做什么,人工神经网络有什么用

新型神经网络芯片会对科技领域乃至整个世界产生什么巨大影响

一、与传统计算机的区别1946年美籍匈牙利科学家冯·诺依曼提出存储程序原理,把程序本身当作数据来对待。

此后的半个多世纪以来,计算机的发展取得了巨大的进步,但“冯·诺依曼架构”中信息存储器和处理器的设计一直沿用至今,连接存储器和处理器的信息传递通道仍然通过总线来实现。

随着处理的数据量海量地增长,总线有限的数据传输速率被称为“冯·诺依曼瓶颈”——尤其是移动互联网、社交网络、物联网、云计算、高通量测序等的兴起,使得‘冯·诺依曼瓶颈’日益突出,而计算机的自我纠错能力缺失的局限性也已成为发展障碍。

结构上的缺陷也导致功能上的局限。例如,从效率上看,计算机运算的功耗较高——尽管人脑处理的信息量不比计算机少,但显然而功耗低得多。

为此,学习更多层的神经网络,让计算机能够更好地模拟人脑功能,成为上世纪后期以来研究的热点。

在这些研究中,核心的研究是“冯·诺依曼架构”与“人脑架构”的本质结构区别——与计算机相比,人脑的信息存储和处理,通过突触这一基本单元来实现,因而没有明显的界限。

正是人脑中的千万亿个突触的可塑性——各种因素和各种条件经过一定的时间作用后引起的神经变化(可变性、可修饰性等),使得人脑的记忆和学习功能得以实现。

大脑有而计算机没有的三个特性:低功耗(人脑的能耗仅约20瓦,而目前用来尝试模拟人脑的超级计算机需要消耗数兆瓦的能量);容错性(坏掉一个晶体管就能毁掉一块微处理器,但是大脑的神经元每时每刻都在死亡);还有不需为其编制程序(大脑在与外界互动的同时也会进行学习和改变,而不是遵循预设算法的固定路径和分支运行。

)这段描述可以说是“电”脑的最终理想了吧。注:最早的电脑也是模拟电路实现的,之后发展成现在的只有0、1的数字CPU。

今天的计算机用的都是所谓的冯诺依曼结构,在一个中央处理器和记忆芯片之间以线性计算序列来回传输数据。这种方式在处理数字和执行精确撰写的程序时非常好用,但在处理图片或声音并理解它们的意义时效果不佳。

有件事很说明问题:2012年,谷歌展示了它的人工智能软件在未被告知猫是什么东西的情况下,可以学会识别视频中的猫,而完成这个任务用到了1.6万台处理器。

要继续改善这类处理器的性能,生产商得在其中配备更多更快的晶体管、硅存储缓存和数据通路,但所有这些组件产生的热量限制了芯片的运作速度,尤其在电力有限的移动设备中。

这可能会阻碍人们开发出有效处理图片、声音和其他感官信息的设备,以及将其应用于面部识别、机器人,或者交通设备航运等任务中。

神经形态芯片尝试在硅片中模仿人脑以大规模的平行方式处理信息:几十亿神经元和千万亿个突触对视觉和声音刺激物这类感官输入做出反应。

作为对图像、声音等内容的反应,这些神经元也会改变它们相互间连接的方式,我们把这个过程叫做学习。神经形态芯片纳入了受人脑启发的“神经网路”模式,因此能做同样的事。

人工智能的顶尖思想家杰夫·霍金斯(JeffHawkins)说,在传统处理器上用专门的软件尝试模拟人脑(谷歌在猫实验中所做的),以此作为不断提升的智能基础,这太过低效了。

霍金斯创造了掌上电脑(PalmPilot),后来又联合创办了Numenta公司,后者制造从人脑中获得启发的软件。“你不可能只在软件中建造它,”他说到人工智能,“你必须在硅片中建造它。

”现有的计算机计算,程序的执行是一行一行执行的,而神经网络计算机则有所不同。现行的人工智能程式,基本上都是将大大小小的各种知识写成一句一句的陈述句,再灌进系统之中。

当输入问题进去智能程式时,它就会搜寻本身的资料库,再选择出最佳或最近解。2011年时,IBM有名的Watson智能电脑,便是使用这样的技术,在美国的电视益智节目中打败的人类的最强卫冕者。

(神经网络计算机)以这种异步信号发送(因没有能使其同步的中央时钟而得名)处理数据的速度比同步信号发送更快,以为没有时间浪费在等待时钟发出信号上。

异步信号发送消耗的能量也更少,这样便满足了迈耶博士理想的计算机的第一个特点。如果有一个处理器坏了,系统会从另一路线绕过它,这样便满足了迈耶博士理想的计算机的第二个特点。

正是由于为异步信号发送编程并不容易,所以大多数计算机工程师都无视于此。然而其作为一种模仿大脑的方式堪称完美。

功耗方面:硬件方面,近年来主要是通过对大型神经网络进行仿真,如Google的深度学习系统GoogleBrain,微软的Adam等。但是这些网络需要大量传统计算机的集群。

比方说GoogleBrain就采用了1000台各带16核处理器的计算机,这种架构尽管展现出了相当的能力,但是能耗依然巨大。而IBM则是在芯片上的模仿。

4096个内核,100万个“神经元”、2.56亿个“突触”集成在直径只有几厘米的方寸(是2011年原型大小的1/16)之间,而且能耗只有不到70毫瓦。

IBM研究小组曾经利用做过DARPA的NeoVision2Tower数据集做过演示。

它能够实时识别出用30帧每秒的正常速度拍摄自斯坦福大学胡佛塔的十字路口视频中的人、自行车、公交车、卡车等,准确率达到了80%。

相比之下,一台笔记本编程完成同样的任务用时要慢100倍,能耗却是IBM芯片的1万倍。

Ref:Amillionspiking-neuronintegratedcircuitwithascalablecommunicationnetworkandinterface.PaulA.Merollaetal.Science345,668(2014);DOI:10.1126/science.1254642因为需要拥有极多数据的Database来做training以及需要极强大的计算能力来做prediction,现有的一些Deeplearning如AndrewNg的GoogleBrain、Apple的Siri等都需要连接网络到云端的服务器。

二、争议:虽然深度学习已经被应用到尖端科学研究及日常生活当中,而Google已经实际搭载在核心的搜寻功能之中。但其他知名的人工智能实验室,对於深度学习技术的反应并不一致。

例如艾伦人工智慧中心的执行长OrenEtzioni,就没有考虑将深度学习纳入当前开发中的人工智慧系统中。

该机构目前的研究是以小学程度的科学知识为目标,希望能开发出光是看学校的教科书,就能够轻松应付各类考试的智能程式。

OrenEtzioni以飞机为例,他表示,最成功的飞机设计都不是来自於模仿鸟的结构,所以脑神经的类比并无法保证人工智能的实现,因此他们暂不考虑借用深度学习技术来开发这个系统。

但是从短期来看,情况也许并没有那么乐观。首先芯片的编程仍然是个大问题。芯片的编程要考虑选择哪一个神经元来连接,以及神经元之间相互影响的程度。

比方说,为了识别上述视频中的汽车,编程人员首先要对芯片的仿真版进行必要的设置,然后再传给实际的芯片。

这种芯片需要颠覆以往传统的编程思想,尽管IBM去年已经发布了一套工具,但是目前编程仍非常困难,IBM团队正在编制令该过程简单一点的开发库。

(当然,如果我们回顾过去编程语言从汇编一路走来的历史,这一点也许不会成为问题。)其次,在部分专业人士看来,这种芯片的能力仍有待证实。

再者,真正的认知计算应该能从经验中学习,寻找关联,提出假设,记忆,并基于结果学习,而IBM的演示里所有学习(training)都是在线下的冯诺依曼计算机上进行的。

不过目前大多数的机器学习都是离线进行的,因为学习经常需要对算法进行调整,而IBM的硬件并不具备调整的灵活性,不擅长做这件事情。

三、人造神经元工作原理及电路实现人工神经网络人工神经网络(artificialneuralnetwork,缩写ANN),简称神经网络(neuralnetwork,缩写NN),是一种模仿生物神经网络的结构和功能的数学模型或计算模型。

神经网络是一种运算模型,由大量的节点(或称“神经元”,或“单元”)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activationfunction)。

每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。

而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。Ref:Wikipedia:人工神经网络电路原理神经递质的分泌反过来又是对动作电位刺激的反应。

然而神经元在接收到这些神经递质信号中的一个后便不会再继续发出动作电位。当然,它们会逐渐累加至一个极限值。

在神经元接受了一定数量的信号并超过极限值后—-从根本上讲是一个模拟进程—-然后它们会发出一个动作电位,并自行重置。

Spikey的人造神经元也是这么做的,当它们每次受到激发时都会在电容中累积电荷,直至达到限值,电容再进行放电。具体电路结构和分析之后有机会的话再更新。

现阶段硬件的实现方式有数电(IBM、Qualcomm)、模电、数模混合(学界)、GPUs等等,还有各种不是基于硅半导体制程制作的神经元等的device方面的研究。

四、历史Neuromorphicengineering由老祖宗CarverMead提出卡福·米德是加州理工学院的一名工程师,被公认为神经形态计算机之父(当然还发明了“神经形态学”这个词)神经形态芯片的创意可以追溯到几十年前。

加州理工大学的退休教授、集成电路设计的传奇人物卡弗·米德(CarverMead)在1990年发表的一篇论文中首次提出了这个名称。这篇论文介绍了模拟芯片如何能够模仿脑部神经元和突触的电活动。

所谓模拟芯片,其输出是变化的,就像真实世界中发生的现象,这和数字芯片二进制、非开即关的性质不同。后来这(大脑研究)成为我毕生的工作,我觉得我可以有所贡献,我尝试离开计算机行业而专注大脑研究。

首先我去了MIT的人工智能研究院,我想,我也想设计和制作聪明的机器,但我的想法是先研究大脑怎么运作。而他们说,呃,你不需要这样做,我们只需要计算机编程。而我说,不,你应该先研究大脑。

他们说,呃,你错了。而我说,不,你们错了。最后我没被录取。但我真的有点失望,那时候年轻,但我再尝试。几年后再加州的Berkley,这次我尝试去学习生物方面的研究。我开始攻读生物物理博士课程。

我在学习大脑了,而我想学理论。而他们说,不,你不可以学大脑的理论,这是不可以的,你不会拿到研究经费,而作为研究生,没有经费是不可以的。我的天。

八卦:老师说neuralnetwork这个方向每20年火一次,之前有很长一段时间的沉寂期,甚至因为理论的不完善一度被认为是江湖术士的小把戏,申请研究经费都需要改课题名称才能成功。

(这段为小弟的道听途说,请大家看过就忘。后来看相关的资料发现,这段历史可能与2006年GeoffreyE.Hinton提出深度学习的概念这一革命性工作改变了之前的状况有关。

)五、针对IBM这次的工作:关于SyNAPSE美国国防部先进研究项目局的研究项目,由两个大的group组成:IBMteam和HRLTeam。

Synapse在英文中是突触的意思,而SyNAPSE是SystemsofNeuromorphicAdaptivePlasticScalableElectronics的简称。

Cognitivecomputing:NeurosynapticchipsIBMproducesfirstworkingchipsmodeledonthehumanbrain另一个SyNAPSE项目是由IBM阿尔马登实验室(位于圣何塞)的达尔门德拉·穆德哈负责。

与四所美国大学(哥伦比亚大学,康奈尔大学,加州大学默塞德分校以及威斯康辛-麦迪逊大学)合作,穆德哈博士及其团队制造了一台神经形态学计算机的原型机,拥有256个“积分触发式”神经元,之所以这么叫是因为这些神经元将自己的输入累加(即积分)直至达到阈值,然后发出一个信号后再自行重置。

它们在这一点上与Spikey中的神经元类似,但是电子方面的细节却有所不同,因为它们是由一个数字储存器而非许多电容来记录输入信号的。

Ref:Amillionspiking-neuronintegratedcircuitwithascalablecommunicationnetworkandinterface.PaulA.Merollaetal.Science345,668(2014);DOI:10.1126/science.1254642。

谷歌人工智能写作项目:小发猫

人工神经网络可以做什么,人工神经网络有什么用

人工智能的实现方法有哪些

人工智能在计算机上实现时有2种不同的方式:一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同AI爱发猫

这种方法叫工程学方法(ENGINEERINGAPPROACH),它已在一些领域内作出了成果,如文字识别、电脑下棋等。

另一种是模拟法(MODELINGAPPROACH),它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。

遗传算法(GENERICALGORITHM,简称GA)和人工神经网络(ARTIFICIALNEURALNETWORK,简称ANN)均属后一类型。

遗传算法模拟人类或生物的遗传-进化机制,人工神经网络则是模拟人类或动物大脑中神经细胞的活动方式。为了得到相同智能效果,两种方式通常都可使用。

采用前一种方法,需要人工详细规定程序逻辑,如果游戏简单,还是方便的。如果游戏复杂,角色数量和活动空间增加,相应的逻辑就会很复杂(按指数式增长),人工编程就非常繁琐,容易出错。

而一旦出错,就必须修改原程序,重新编译、调试,最后为用户提供一个新的版本或提供一个新补丁,非常麻烦。

采用后一种方法时,编程者要为每一角色设计一个智能系统(一个模块)来进行控制,这个智能系统(模块)开始什么也不懂,就像初生婴儿那样,但它能够学习,能渐渐地适应环境,应付各种复杂情况。

这种系统开始也常犯错误,但它能吸取教训,下一次运行时就可能改正,至少不会永远错下去,用不到发布新版本或打补丁。利用这种方法来实现人工智能,要求编程者具有生物学的思考方法,入门难度大一点。

但一旦入了门,就可得到广泛应用。由于这种方法编程时无须对角色的活动规律做详细规定,应用于复杂问题,通常会比前一种方法更省力。

如何分辨在社交软件上聊天的是真人还是机器人/h2>

直接问它是不是人工智能,是真的人吗会告诉你的,如果它答非所问,就是人工智能了。社交,即社会上的交际往来。而通过网络来实现这一目的的软件便是社交软件。

广泛的来说,手机,座机等通讯设备也属于社交软件的范畴之一,即所有能与人通话交流的都称为社交软件。

全球社交软件使用人数最多的社交软件分别是Facebook、WhatsApp、Messenger,微信排名第四。发展历史从1999年的“滴滴滴”开始,QQ的前身“OICQ”诞生了。

2000年,QQ迭代历史上的经典版本QQ2000上线,标志性的红围脖,胖嘟嘟的造型一时间伴随着互联网的普及名噪大江南北。随着时代的改变,伴随着移动互联的崛起,人们身边渐渐出现了很多社交软件。

2019年1月15日,“微信之父”张小龙在广州发表完长达四小时的演讲之后仅6天,张一鸣的字节跳动、罗永浩的快如科技,以及原快播创始人王欣的云歌人工智能,在同一天发布了自己的社交应用程序——多闪、聊天宝和马桶MT。

SNS的全称是什么/h2>

全称SocialNetworkingServices,即社会性网络服务,专指旨在帮助人们建立社会性网络的互联网应用服务。

SNS的另一种常用解释:全称SocialNetworkSite,即“社交网站”或“社交网”。

社会化网络的基本概念

在社会化网络概念逐渐清晰后,出现了其最具代表性的变现形式SNS。

SNS源自英文缩写(互联网领域有三层含义:服务SocialNetworkService,软件SocialNetworkSoftware,网站SocialNetworkSite;医学领域含义:SympatheticNervousSystem【解】交感神经系统)的翻译,中文直译为社会性网络服务或社交网络服务,意译为社交网络服务。

中文的网络含义包括硬件、软件、服务及网站应用,加上四字构成的词组更符合中国人的构词习惯,因此人们习惯上用社交网络来代指SNS(包括SocialNetworkService的三层含义),用社交软件代指SocialNetworkSoftware,用社交网站代指SocialNetworkSite。

SNS专指旨在帮助人们建立社会性网络的互联网应用服务。

1967年,哈佛大学的心理学教授StanleyMilgram(1934~1984)创立了六度分割理论,简单地说:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过六个人你就能够认识任何一个陌生人。

”按照六度分隔理论,每个个体的社交圈都不断放大,最后成为一个大型网络。这是社会性网络(SocialNetworking)的早期理解。

后来有人根据这种理论,创立了面向社会性网络的互联网服务,通过“熟人的熟人”来进行网络社交拓展,比如ArtComb,Friendster,Wallop,adoreme等。

但“熟人的熟人”,只是社交拓展的一种方式,而并非社交拓展的全部。因此,现在一般所谓的SNS,则其含义已经远不止“熟人的熟人”这个层面。

比如根据用户经历进行凝聚(如Facebook、校内)、根据空间主题进行凝聚(如Qzone、百度空间)、根据社交游戏进行凝聚(如开心网、社交游戏)等,都被纳入“SNS”的范畴。

SNS进入中国最重要的是形态是社交化。

社交网络(SocialNetworking)是指人与人之间的关系网络,这种基于社会网络关系系统思想的网站在国内被称为社交网站(SocialNetworkSite)。

现在许多WEB2.0网站都属于SNS网站,如网络聊天(IM)、交友、视频分享、博客、播客、网络社区、音乐共享等。

社会性网络的理论基础源于六度理论(六度分隔理论,SixDegreesofSeparation)和150法则(RuleOf150)。

物联网、大数据、云计算、人工智能之间的关系如何/h2>

1.物联网本质上是互联网云脑的中枢神经系统和其控制的感觉神经系统和运动神经系统2.云计算本质上是互联网云脑的中枢神经系统,它通过服务器,网络操作系统,神经元网络(大社交网络),大数据和基于大数据的人工智能算法对互联网云脑的其他组成部分进行控制。

3.大数据本质上是互联网云脑各神经系统在运转过程中传输和积累的有价值信息。因为在过去50年随着互联网的快速进化而急速膨胀,体量极其巨大。是互联网云脑产生智慧智能的基础。

4.人工智能本质是互联网云脑产生产生智慧智能的动力源泉,人工智能不仅仅通过算法如深度学习,机器学习与大数据结合,也运用到互联网云脑的神经末梢,神经网络和智能终端中。

使得互联网云脑各个神经系统同时提升能力。5.工业4.0和工业互联网本质是互联网云脑的运动神经系统,这将是互联网云脑未来非常庞大的组成部分,它也将包含6中介绍的各种前沿技术。

6.智能驾驶,云机器人,无人机,3D打印本质上是互联网云脑运动神经系统中最活跃的部分,他们通过延展运动和机械操作,帮助人类完成对世界更强有力的探索和改造。

7.边缘计算本质是互联网云脑神经末梢的发育和成长,人工智能技术不但应用在中枢神经系统中的大数据,神经元网络中,也分布到神经系统的末梢。

让互联网云脑的感觉神经系统,运动神经系统的末梢控制变得更为智能和健壮。8.移动互联网本质是互联网云脑神经纤维种类的丰富,让互联网用户更便捷,更不受地域限制的链接到互联网云脑中。9。

大社交网络(BigSns)是互联网云脑神经元网络,也是互联网云脑最重要的部分。

它由互联网传统社交网络Facebook,微信,微博发育而成,从链接人与人,发展到链接人与物,物与物,甚至包括链接人工智能软件系统10.云反射弧(Cloudreflexarcs)是互联网云脑最重要的神经活动现象,与人类神经系统相仿,也包含感受器、传入神经纤维、神经中枢、传出神经纤维和效应器。

是互联网云脑智能智慧与现实世界互动的重要运行动作。它的种类有7种。将在以后的文章中专门介绍。

11.智慧城市本质是互联网云脑与具体的地域结合的结果,是互联网云脑的缩小版应用,智慧城市的建设,从互联网云脑的架构看,需要关注城市居民,单位,机构,企业建设统一的神经元网络(大社交)的情况,也要关注城市的云反射弧的反应速度和健壮情况,譬如防火云反射弧,金融云反射弧,交通云反射弧,新零售云反射弧,能源云反射弧等。

互联网神经学主要内容是什么

互联网与神经学这两个原本距离遥远的领域,关系远比想象的要深入和密切,过去10年建立的相关理论和实践基础,使得这两个领域交叉可以产生出21世纪的新学科-互联网神经学(Internetneurology)。

互联网神经学的定义为:基于神经学的研究成果,将互联网硬件结构,软件系统,数据与信息,商业应用有机的整合起来,从而构建互联网完整架构体系,并预测互联网沿着神经学路径可能产生的新功能和新架构;根据互联网不断产生和稳定下来的功能结构,提出研究设想,分析人类大脑产生意识,思想,智能,认知的生物学基础;研究互联网和人类大脑结构如何相互影响,相互塑造,相互结合,相互促进的双巨系统交叉关系。

中文名互联网神经学外文名Internetneurology一。革命技术引发科学突破每一次人类社会的重大技术变革都会导致新领域的科学革命,大航海时代使人类看到了生物的多样性和孤立生态系统对生物的影响。

无论是达尔文还是华莱士都是跟随远航的船队才发现了生物的进化现象。大工业革命使人类无论在力量的使用还是观察能力都获得的极大的提高。为此后100年开始的物理学大突破,奠定了技术基础。

这些突破包括牛顿的万有引力,爱因斯坦的相对论,和众多科学家创建的量子力学大厦,这些突破都与”力“和”观测“有关。互联网革命对于人类的影响已经远远超过了大工业革命。

与工业革命增强人类的力量和视野不同,互联网极大的增强了人类的智慧,丰富了人类的知识。而智慧和知识恰恰与大脑的关系最为密切.二。

互联网与神经科学的7年研究历史从2008年9月,刘锋与科学院大学彭庚教授在科技论文在线发表论文“互联网进化规律的发现与分析”开始,的7年时间里,共发表论文10篇,专著《互联网进化论》一部对互联网与神经学的关系进行深入探讨。

从神经学的角度分析互联网的成熟结构,将其抽象为一个与人类大脑高度相似的组织结构-互联网虚拟大脑。寻找并定位互联网的虚拟听觉,视觉,感觉,运动神经系统,虚拟中枢神经系统等。

绘制出互联网虚拟大脑结构图,如图1。

图1互联网虚拟大脑结构图同时,我们也对应提出如果脑科学对互联网的未来发展有重要的启发作用,那么不断发展的互联网结构和功能会不会能够作为解开大脑之谜的钥匙,即人脑中在数万年前就已经包含了今天和未来成熟的互联网架构,通过神经生理学和神经心理学领域的研究实验,在人类大脑中是否可以找到Google一样的搜索引擎,Facebook一样的SNS系统,IPv4一样的地址编码系统,思科一样的路由系统。

2012年开始美国等国家的科研人员也开始注意到互联网与脑科学的关系,2012年11月16日,加州大学圣迭戈分校DmitriKrioukov在《ScientificReport》发表的论文“NetworkCosmology”提出互联网与脑神经网络的发展与构造具有高度的相似性。

2015年2月4日来自巴塞尔大学的研究人员报道称,发现大脑中的神经元像一个社会网络一样连接在一起。每个神经细胞都与许多其他的神经细胞相连接,但只有少数彼此非常相似的细胞之间会建立最强有力的联系。

这些研究结果发布在2015年2月4日的《自然》(Nature)杂志上。三。

互联网神经学的提出与研究方向互联网与神经学这两个原本距离遥远的领域,关系远比想象的要深入和密切,过去10年建立的相关理论和实践基础,使得这两个领域交叉可以产生出21世纪的新学科-互联网神经学(Internetneurology),互联网进化论作者刘锋这样定义互联网神经学(Internetneurology):基于神经学的研究成果,将互联网硬件结构,软件系统,数据与信息,商业应用有机的整合起来,从而构建互联网完整架构体系,并预测互联网沿着神经学路径可能产生的新功能和新架构;根据互联网不断产生和稳定下来的功能结构,提出研究设想,分析人类大脑产生意识,思想,智能,认知的生物学基础;研究互联网和人类大脑结构如何相互影响,相互塑造,相互结合,相互促进的双巨系统交叉关系。

如果以脑科学和互联网为横坐标轴两端,生理学和心理学作为纵坐标的上下两段,互联网神经学将由四部分组成:互联网神经生理学,互联网神经心理学,大脑互联网生理学,大脑互联网心理学,它们之间的交叉部分将形成第五个组成部分-互联网认知科学,他们的关系如图二所示。

四,破解人类核心机密–互联网神经学的5个组成部分互联网神经生理学(Internetneurophysiology)重点研究基于神经学的互联网基础功能和架构,包括但不限于互联网中枢神经系统,互联网感觉神经系统,互联网运动神经系统,互联网自主神经系统,互联网神经反射弧,基于深度学习等算法,运用互联网大数据进行图像,声音,视频识别等互联网人工智能处理机制。

互联网神经心理学(Internetneuropsychology.)重点研究互联网在向成熟脑结构进化的过程中,产生的类似神经心理学的互联网现象。

包括但不仅限于互联网群体智慧的产生问题,互联网的情绪问题,互联网梦境的产生和特点,互联网的智商问题等。

大脑互联网生理学(BrainInternetphysiology)重点研究大脑中存在的类似于互联网的功能结构,使得不断发展的互联网成为破解大脑生物学原理的参照系,包括但不仅限于大脑中的类搜索引擎机制,大脑中类互联网路由机制,大脑中的类IPv4/IPv6机制,大脑神经元类社交网络的交互机制,人类使用互联网对大脑生理学结构的重塑影响等。

大脑互联网心理学(BrainInternetpsychology)重点研究互联网对人类大脑在心理学层面的影响和重塑,包括但不仅限于互联网对使用者产生的网瘾问题,互联网对使用者智商影响问题,互联网对使用者情绪和社交关系的影响问题等互联网认知科学(TheInternetincognitivescience)可看做互联网神经生理学,互联网神经心理学,大脑互联网生理学,大脑互联网心理学的组合交叉,重点研究互联网和大脑两个巨系统相互影响,相互塑造,相互结合,互助进化,从而产生智慧,认知,情绪的深层次原理。

五建立在中国诞生的新学科:互联网神经学是在过去10年的研究基础上形成的新科学理论,目标是在生理学和心理学两个层面,将互联网和脑科学这两个领域进行交叉对比,从而为建立完整的互联网架构,预测互联网未来发展趋势,大脑架构和运行机理,以及智能,认知,情感的产生原理提供理论支持。

由于互联网和脑科学都处在高速发展过程中,根据互联网和脑科学出现的新进展,吸收其中的合理成分,使之成为互联网神经学发展的第一个动力。

同时运用互联网神经学理论对互联网的未来进行预测,对大脑中的未知结构和运行机制提出研究设想。根据实验结构对互联网神经学理论进行优化和调整,使之成为理论发展的第二个动力。

一篇文章搞懂人工智能,机器学习和深度学习之间的区别

为了搞清三者关系,我们来看一张图:如图所示:人工智能最大,此概念也最先问世;然后是机器学习,出现的稍晚;最后才是深度学习。

从低潮到繁荣自从1956年计算机科学家们在达特茅斯会议(DartmouthConferences)上确认人工智能这个术语以来,人们就不乏关于人工智能奇思妙想,研究人员也在不遗余力地研究。

在此后的几十年间,人工智能先是被捧为人类文明光明未来的钥匙,后又被当作过于自大的异想天开而抛弃。但是在过去几年中,人工智能出现了爆炸式的发展,尤其是2015年之后。

大部分原因,要归功于图形处理器(GPU)的广泛应用,使得并行处理更快、更便宜、更强大。

另外,人工智能的发展还得益于几乎无限的存储空间和海量数据的出现(大数据运动):图像、文本、交易数据、地图数据,应有尽有。下面我们从发展的历程中来一一展开对人工智能、机器学习和深度学习的深度学习。

人工智能人工智能先驱们在达特茅斯开会时,心中的梦想是希望通过当时新兴的计算机,打造拥有相当于人类智能的复杂机器。

这就是我们所说的“通用人工智能”(GeneralAI)概念,拥有人类五感(甚至更多)、推理能力以及人类思维方式的神奇机器。

在电影中我们已经看过无数这样的机器人,对人类友好的C-3PO,以及人类的敌人终结者。通用人工智能机器至今只存在于电影和科幻小说里,理由很简单:我们还实现不了,至少目前为止。

我们力所能及的,算是“弱人工智能”(NarrowAI):执行特定任务的水平与人类相当,甚至超越人类的技术。现实中有很多弱人工智能的例子。这些技术有人类智能的一面。但是它们是如何做到的能来自哪里/p>

这就涉及到下一个同心圆:机器学习。机器学习机器学习是实现人工智能的一种方法。机器学习的概念来自早期的人工智能研究者,已经研究出的算法包括决策树学习、归纳逻辑编程、增强学习和贝叶斯网络等。

简单来说,机器学习就是使用算法分析数据,从中学习并做出推断或预测。与传统的使用特定指令集手写软件不同,我们使用大量数据和算法来“训练”机器,由此带来机器学习如何完成任务。

许多年来,计算机视觉一直是机器学习最佳的领用领域之一,尽管还需要大量的手动编码才能完成任务。

研究者会手动编写一些分类器(classifier),如边缘检测筛选器,帮助程序辨别物体的边界;图形检测分类器,判断物体是否有八个面;以及识别“S-T-O-P”的分类器。

在这些手动编写的分类器的基础上,他们再开发用于理解图像的算法,并学习如何判断是否有停止标志。但是由于计算机视觉和图像检测技术的滞后,经常容易出错。深度学习深度学习是实现机器学习的一种技术。

早期机器学习研究者中还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。

但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络中数据传播要经历不同的层,传播方向也不同。举个例子,你可以将一张图片切分为小块,然后输入到神经网络的第一层中。

在第一层中做初步计算,然后神经元将数据传至第二层。由第二层神经元执行任务,依次类推,直到最后一层,然后输出最终的结果。每个神经元都会给其输入指定一个权重:相对于执行的任务该神经元的正确和错误程度。

最终的输出由这些权重共同决定。因此,我们再来看看上面提到的停止标志示例。一张停止标志图像的属性,被一一细分,然后被神经元“检查”:形状、颜色、字符、标志大小和是否运动。

神经网络的任务是判断这是否是一个停止标志。它将给出一个“概率向量”(probabilityvector),这其实是基于权重做出的猜测结果。

在本文的示例中,系统可能会有86%的把握认定图像是一个停止标志,7%的把握认为是一个限速标志,等等。网络架构然后会告知神经网络其判断是否正确。

不过,问题在于即使是最基础的神经网络也要耗费巨大的计算资源,因此当时不算是一个可行的方法。

不过,以多伦多大学GeoffreyHinton教授为首的一小批狂热研究者们坚持采用这种方法,最终让超级计算机能够并行执行该算法,并证明该算法的作用。

如果我们回到停止标志那个例子,很有可能神经网络受训练的影响,会经常给出错误的答案。这说明还需要不断的训练。

它需要成千上万张图片,甚至数百万张图片来训练,直到神经元输入的权重调整到非常精确,几乎每次都能够给出正确答案。

不过值得庆幸的是Facebook利用神经网络记住了你母亲的面孔;吴恩达2012年在谷歌实现了可以识别猫的神经网络。

如今,在某些情况下,通过深度学习训练过的机器在图像识别上表现优于人类,这包括找猫、识别血液中的癌症迹象等。谷歌的AlphaGo学会了围棋,并为比赛进行了大量的训练:不断的和自己比赛。

总结人工智能的根本在于智能,而机器学习则是部署支持人工智能的计算方法。简单的将,人工智能是科学,机器学习是让机器变得更加智能的算法,机器学习在某种程度上成就了人工智能。

本文作者MichaelCopeland曾是WIRED编辑,现在是硅谷知名投资机构AndreessenHorowitz的合伙人。

人工智能技术是社交网络的救命稻草吗

人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。

但总的来说,“人工系统”就是通常意义下的人工系统。

人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。

但不同的时代、不同的人对这种“复杂工作”的理解是不同的。

来源:普通网友

声明:本站部分文章及图片转载于互联网,内容版权归原作者所有,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2022年7月18日
下一篇 2022年7月18日

相关推荐