应县木塔的静力学浅析

应县木塔的静力学浅析

假期你去应县木塔了吗?

应县木塔位于山西省北部,朔州应县佛宫寺内,全称“佛宫寺释迦塔”,是我国如今唯一保存完好的木构塔式建筑。据明万历年间田蕙(字应芳,号绎斋,今山西应县人,1535-1610)《应州志》记载,应县木塔于辽代清宁二年(1056,北宋至和三年)由田和尚奉敕募建,至金代明昌六年(1195)增修益完(修建年代学界有争议)。

如图1所示,塔身自下往上分为四个部分:第一部分是砖石阶基,高4.40m;第二是木塔塔身,高51.14m;第三是砖刹座,高1.86m;第四是最上的铁制塔刹,高9.91m。全塔总高度67.31m,大约相当于今天的21-24层楼的高度(按楼层高2.8m-3.2m计算)。

应县木塔的静力学浅析

图1 应县木塔整体及局部图  来源:网络搜索

世界高层建筑委员会(属联合国教科文组织)曾建议将高层建筑分为四类,I类为9-16层,高度不超过50m;II类为17-25层,高度不超过75;III类为26-40层,高度不超过100m;IV类为40层以上,高度在100m以上。可见,在这一标准中,应县木塔可归类为II类高层建筑。但不要忘记,这是960多年前的木建筑,而且全塔无钉无铆,仅使用榫卯连接,在当时的科技条件下建造II类高层建筑,其高超的建筑水准可见一斑。

相比于低层建筑,高层建筑高度跨度大,随着高度的增加,侧向载荷(如横向风载)将表现出非线性快速增加的趋势,如图2(a)所示。由此引起的结构内部的水平位移/内力随高度的变化规律也将发生不同的变化。如图2(b)所示,高层建筑内竖向轴力随高度按照线性规律增加,弯矩则按照二次规律增加,水平位移则以四次规律增加。

应县木塔的静力学浅析

图2 高层建筑随高度增加载荷、内力、水平位移的变化趋势   彭伟《高层建筑结构设计原理》

我们通常见高层建筑施工时都会有一个很深的基坑,如果是地质条件较差的地区还需要打桩,相当于增加了建筑的埋深。一般规定桩基深度不小于建筑总高度的1/18,桩基所受的约束就像固定端,因此,在力学上,常将高层建筑简化为竖立的“悬臂梁”(承受压弯组合变形)。

应县木塔的静力学浅析

图2 高层建筑的“竖悬臂梁”模型

(其中,Δ表示水平位移,M表示高层建筑截面弯矩,N表示高层建筑截面轴力

为简化分析,我们假定侧向风载为均匀载荷(实际上,风载随高度变化,且具有随机性),以此画出高层建筑的变形曲线、轴力、剪力图如图4所示。

应县木塔的静力学浅析

图4 高层建筑的内力和位移分析

依据轴力图和弯矩图,高层建筑适合采用自下而上截面逐步收缩的变截面造型,可达到依次增强低层区承载能力的目的。应县木塔就采用了这样逐步内缩的整体造型,连接2层以上各层外檐柱柱头,它们大致落在同一条直线上,由此大致可推测出应县木塔的内缩角度大约在8o左右(依图5(a)比例量得)。

我国古建筑另一个神奇之处在于,它不像现代建筑那样,利用基坑把建筑深深的“埋”入地下,而是通过很大的基座平台将建筑“放”在基座之上。“埋”入地下的做法相当于固定端,可为高层建筑提供足够抗倾覆力矩,以确保建筑的稳定性。虽然应县木塔基础的细节还不完全清楚,但根据其它古建筑的经验,应县木塔应该也是“放”在基座之上,巨大的砖石阶基就是证据。那么,应县木塔如何提供建筑的抗倾覆力矩呢?

这主要涉及到三个方面:首先,向上收缩的变截面保证了木塔的中心尽可能的在中线上,横向载荷产生的倾覆力矩在各方向相同,所需的抗倾覆力矩在各方向也相同;其次,应县木塔第一层直径较上面各层直径有明显的增加,对于没有大底座的建筑(参见图5(b)),在横向载荷下,地面支撑力与重力形成抗倾覆力矩较小(d很小),若横向载荷偏大极有可能翻到,但如果有大底座(参见图5(c)),一方面它降低了建筑整体的重心,另一方面使得地面支撑向外移动,这就大大增加了建筑的抗倾覆能力;最后,古建筑的屋顶通常都很重,增加了建筑物的重量G,也起到了增加抗倾覆能力。

应县木塔的静力学浅析

图5 自下而上逐渐内缩的造型

应县木塔正是利用上述三点,虽然貌似“放”在基座上不如埋入地下稳定,但实际上,在较大重量和底座的配合也可以获得足够的抗倾覆力矩。值得注意的是,这种“放”在基座上的建筑保留了一定的自由度,在遇到如地震等强外载荷时,建筑可以产生一定范围内的“移动”,从而消耗强大的能量输入。据统计,应县木塔建成至今,共经历了40余次地震,200余次枪击炮轰,却安然无恙,令人不由得为之惊叹、称奇。

在我国的《高层建筑混凝土结构技术规程》中,高层建筑被分为A级和B级两类,这种划分没有明确指明楼高,而是将其与结构形式、抗震设防烈度相关联。表1给出了几类典型结构体系对应抗震设防烈度下的最高楼层高度,从中可以看出,筒中筒结构在相同抗震设防等级下,能取得最高的高度,体现了筒中筒结构的合理性。应县木塔就采用了这样的筒中筒结构体系。

表1  A级钢筋混凝土高层建筑的最大适用高度

应县木塔的静力学浅析

顾名思义,筒中筒结构体系由内筒和外筒两层组成,如图6所示。常见的外筒形式包括钢框架筒(框架结构)、桁架筒(有明显的节)和网格筒(外筒看不到节,但内部与内筒以节相连)三种,内筒有桁架筒和剪力墙筒体两种形式。

应县木塔的静力学浅析

图6  筒中筒体系举例   来源:网络搜索

筒中筒体系的设计灵感很可能来源于竹。竹有两个明显特征:有节、腹空。正是这两个特征才使得竹可以高耸挺拔,直入云霄。依旧采用“悬臂梁”模型,来竹在强度、刚度、稳定性三方面的特点,以体会筒中筒结构的优势。

从强度条件看,高耸的竹子侧向载荷显著,强度主要考虑弯矩应力,最大弯曲应力的求解公式为

应县木塔的静力学浅析

其中,Wz为抗弯截面系数,由上式可知该系数越大,求得最大应力越小,结构的安全储备就越多,结构越安全。

当外载荷确定后,梁所受最大弯矩Mmax即为常数,其强度取决于抗弯截面系数。假设有空心和实心梁。设空心梁外径为D,实心梁外径为D,设空心梁内外径之比α固定为0.9,且空心和实心梁抗弯截面系数相同时,有

应县木塔的静力学浅析

则,两者的面积之比为

应县木塔的静力学浅析

这意味着,在相同强度条件下,空心结构的重量几乎只是实心结构的38%(1/2.58)。同理,如果假定两中结构的重量相等,即横截面面积相等(设高度相等),有

应县木塔的静力学浅析

其抗弯截面系数之比为

应县木塔的静力学浅析

这说明在同等重量下,实心梁的抗弯截面系数只有空心梁的24%。可见,合理的设计“腹空”结构,可在减少重量的同时提高结构的抗弯截面系数。 再考虑刚度条件,在均布载荷下,梁的最大挠度为

应县木塔的静力学浅析

对于确定的高度、载荷、材料,q, H, E均为常数,因此与截面形状有关的截面惯性矩就成为影响最大挠度的关键量。这里,EI被称为抗弯刚度,显然,抗弯刚度越大,产生的位移越小。仿照前面分析,同样可得,当结构取得相同抗弯刚度时,即

应县木塔的静力学浅析

因此两者的面积比为

应县木塔的静力学浅析

说明考虑相同刚度条件,空心结构用材只有实心结构用材的1/3。如果考虑空心和实心梁横截面相同(两个直径比为0.436),抗弯刚度之比为

应县木塔的静力学浅析

这意味着当空心梁与实心梁横截面积相等时,实心梁的抗弯刚度,只有空心抗弯刚度的10%,也意味着实心梁的最大挠度将是空心梁最大挠度的10倍。

来源:安世亚太科技股份有限公司

声明:本站部分文章及图片转载于互联网,内容版权归原作者所有,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2022年8月27日
下一篇 2022年8月27日

相关推荐

发表回复

登录后才能评论